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We suggest a quantum stabilization method for the SU(2) or-model, based on the 
constant-cutoff limit of the cutoff quantization method developed by Balakrishna 
et al., which avoids the difficulties with the usual soliton boundary conditions 
pointed out by lwasaki and Ohyama. We investigate the baryon number B = l 
sector of the model and show that after the collective coordinate quantization it 
admits a stable soliton solution which depends on a single dimensional arbitrary 
constant. Using the constant-cutoff approach, we then study the SU(2) soliton 
Hamiltonian, which does not contain the electric seagull terms, and show that if 
the fields are restricted to the collective subspace, the electric seagull terms are 
induced in the effective Hamiltonian similarly to the case of the complete Skyrme 
model. These terms are consistent with gauge invariance and leading-term 
predictions of the chiral perturbation calculation of the electric polarizability. 

I. I N T R O D U C T I O N  

It was shown by Skyrme (1961, 1962) that baryons can be treated as 
solitons of  a nonlinear chiral theory. The original Lagrangian of  the chiral 
SU(2) g-model  is 

where 

= ~ Tr Ov.U a~U § (1.1) 

U = (2/F~)({I + i'r-,r) (1.2) 

is a unitary operator ( U U  + = 1) and F,, is the pion-decay constant. In (1.2), 
cr = cr(r) is a scalar meson field and ~ = ~(r )  is the pion isotriplet. 
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The classical stability of the soliton solution to the chiral ~r-model 
Lagrangian requires an additional ad hoc term, proposed by Skyrme (1961, 
1962), to be added to (1.1): 

1 
~sk = 32e 2 Tr[U+O~U, U+O~U] 2 (1.3) 

with a dimensionless parameter e and where [A, B] = AB - BA. It was 
shown by several authors [e.g., Adkins et aL (1983); for extensive lists of 
other references see Holzwarth and Schwesinger (1986) and Nyman and 
Riska (1990)] that, after collective quantization using the spherically symmet- 
ric ansatz 

Uo(r) = exp[iT.roF(r)], r0 = rlr (1.4) 

the chiral model, with both (1.1) and (1.3) included, gives good agreement 
with experiment for several important physical quantities. Thus it should be 
possible to derive the effective chiral Lagrangian obtained as a sum of (1.1) 
and (1.3) from a more fundamental theory like QCD. On the other hand, it 
is not easy to generate a term like (1.3) and give a clear physical meaning 
to the dimensionless constant e in (1.3) using QCD. 

Mignaco and Wulck (1989) (MW) indicated therefore the possibility to 
build a stable single-baryon (n = 1) quantum state in the simple chiral theory 
with the Skyrme stabilizing term (1.3) omitted. They showed that the chiral 
angle F(r) is in fact a function of a dimensionless variable s - i ,, - ~-• (0)r, where 
X"(0) is an arbitrary dimensional parameter intimately connected to the usual 
stability argument against the soliton solution for the nonlinear tr-model 
Lagrangian. 

Using the adiabatically rotated ansatz U(r, t) = A(t)Uo(r)A+(t), where 
U0(r) is given by (1.4), MW obtained the total energy of the nonlinear tr- 
model soliton in the form 

"rr 1 1 Ix"(0) ]  3 
E = ~ F~ ~ a + ~ 0rl4)F~b S(S + I) (1.5) 

where 

a = I o [ l s z ( d ~ ) 2 + 8 s i n 2 ( l ~ ) ] d r  

b =  ds T 

and ~(s) is defined by 

F(r) = F(s) = -n~r + �88 

(1.6) 

(1.7) 

(1.8) 
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The stable minimum of the function (1.5) with respect to the arbitrary dimen- 
sional scale parameter • is 

4 [3(4)2a32 b- ]1/4 
E = F~ J(J + 1)J (1.9) 

Despite the nonexistence of the stable classical soliton solution to the 
nonlinear (r-model, it is possible, after collective coordinate quantization, to 
build a stable chiral soliton at the quantum level, provided that there is a 
solution F = F(r) which satisfies the soliton boundary conditions, i.e., F(0) 
= - n ~ ,  F(oo) = 0, such that the integrals (1.6) and (1.7) exist. 

However, as pointed out by Iwasaki and Ohyama (1989), the quantum 
stabilization method in the form proposed by MW is not correct, since in 
the simple (r-model the conditions F(0) = -n-rr and F(oo) = 0 cannot be 
satisfied simultaneously. In other words, if the condition F(0) = - ~  is 
satisfied, Iwasaki and Ohyama obtained numerically F(oo) ~ -~r/2, and the 
chiral phase F = F(r) with correct boundary conditions does not exist. 

Iwasaki and Ohyama also proved analytically that both boundary condi- 
tions F(0) = -n-rr and F(o0) = 0 cannot be satisfied simultaneously. Introduc- 
ing a new variable y = 1/r into the differential equation for the chiral angle 
F = F(r), we obtain 

dZF 1 
sin 2F (1.10) dy2 y2 

There are two kinds of asymptotic solutions to equation (1.10) around the 
point y = 0, which is called a regular singular point if sin 2F ~- 2F. These 
solutions are 

m"ff + cy2, m = even integer (1.11) F ( y ) =  2 

F ( y ) =  m'rr + x / ~  cos[-~--~ ln(cy) + ct ] 2  m = odd integer(1.12) 

where c is an arbitrary constant and ot is a constant to be chosen appropriately. 
When F(O) -- -n'tr, then we want to know which of these two solutions is 
approached by F(y) when y -~ 0 (r -~ ~). In order to answer that question 
we multiply (1.10) by y2F'(y), integrate with respect to y from y to oo, and 
use F(O) = -n'rr. Thus we get 

y2F'(y) + 2y[F'(y)]2dy = 1 - cos[2F(y)] (1.13) 
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Since the left-hand side of (1.13) is always positive, the value of F(y) is 
always limited to the interval n~r - "rr < F(y) < n'tr + "tr. Taking the limit 
y ~ 0, we find that (1.13) is reduced to 

i~2y[F'(y)] 2 dy = 1 - ( - 1 )  m (1.14) 

where we used (1.11)-(1.12). Since the left-hand side of (1.14) is strictly 
positive, we must choose an odd integer m. Thus the solution satisfying F(0) 
= -n 'rr  approaches (1.12) and we have F(~) 4: 0. The behavior of the 
solution (1.11) in the asymptotic region y ~ ~ (r ~ 0) is investigated by 
multiplying (1.10) by F'(y),  integrating from 0 to y, and using (1.11). The 
result is 

[F,(y)] 2 _ 2 sin2F(y) I i  2 sin2F(y) 
y2 + y3 dy (1.15) 

From (1.15) we see that F'(y)  --~ const as y --~ ~, which means that F(r) ~- 
llr for r ~ 0. This solution has a singularity at the origin and cannot satisfy 
the usual boundary condition F(0) = -n'rr.  

In Dalarsson (1991a,b, 1992), I suggested a method to resolve this 
difficulty by introducing a radial modification phase q~ = q~(r) in the ansatz 
(1.4) as follows: 

U(r) = exp[iT.roF(r) + iq~(r)l, r0 = rlr (l.16) 

Such a method provides a stable chiral quantum soliton, but the resulting 
model is an entirely noncovariant chiral model, different from the original 
chiral ~r-model. 

In the present paper we use the constant-cutoff limit of  the cutoff quanti- 
zation method developed by Balakrishna et aL (1991; see also Jain et al. 
(1989) to construct a stable chiral quantum soliton within the original chiral 
~r-model. Then we apply this method to study the SU(2) soliton Hamiltonian, 
which does not contain the electric seagull terms, and show that if the fields 
are restricted to the collective subspace, the electric seagull terms are induced 
in the effective Hamiltonian, similar to the case of the complete Skyrme 
model. These terms are consistent with gauge invariance and leading-term 
predictions of the chiral perturbation calculation of the electric polarizability. 

The reason why the cutoff approach to the problem of the chiral quantum 
soliton works is connected to the fact that the solution F = F(r) which 
satisfies the boundary condition F(~) = 0 is singular at r = 0. From the 
physical point of view the chiral quantum model is not applicable to the 
region about the origin, since in that region there is a quark-dominated bag 
of the soliton. 
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However, as argued in Balakrishna et al. (1991), when a cutoff ~ is 
introduced, then the boundary conditions F(r = -n'rr and F(~) = 0 can be 
satisfied. They also discussed an interesting analogy with the damped pendu- 
lum, showing clearly that as long as e > 0, there is a chiral phase F = F(r) 
satisfying the above boundary conditions. The asymptotic forms of such a 
solution are given by Eq. (2.2) in Balakrishna et al. (1991). From these 
asymptotic solutions we immediately see that for e ---> 0 the chiral phase 
diverges at the lower limit. 

Different applications of the constant-cutoff approach are discussed in 
Dalarsson (1993, 1995b-d; 1996a-c). 

2. CONSTANT-CUTOFF STABILIZATION 

The chiral soliton with baryon number n = 1 is given by (1.4), where 
F = F(r) is the radial chiral phase function satisfying the boundary conditions 
F(0) = - ~  and F ( ~ )  = 0.  

Substituting (1.4) into (1.1), we obtain the static energy of the chiral 
baryon 

7r 2Ii~ dr[r2~dF~2+2sin2F] (2.1) Eo = ~ F ~  (t) L \-~r]  

In (2.1) we avoid the singularity of  the profile function F = F(r) at the origin 
by introducing the cutoff e(t) at the lower boundary of  the space interval r 

[0, ~], i.e., by working with the interval r ~ [e, ~]. The cutoff itself is 
introduced following Balakrishna et al. (1991) as a dynamic time-depen- 
dent variable. 

From (2.1) we obtain the following differential equation for the profile 
function F = F(r): 

drr r2 & = sin 2F  (2.2) 

with the boundary conditions F(e) = - ~  and F(~)  = 0, such that the correct 
soliton number is obtained. The profile function F = Fir; e(t)] now depends 
implicitly on time t through e(t). Thus in the nonlinear or-model Lagrangian 

L = F---~2~ f Tr(O~U O~U § d3x (2.3) 
16 J 

we use the ans/itze 

U(r, 0 = A(t)Uo(r, t)A*(t) 

U§ 0 = A(t)U~(r, t)A*(t) (2.4) 
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where 

U0(r, t) = exp{ix, r0E[r; ~(/)] } (2.5) 

The static part of the Lagrangian (2.3), i.e., 

L = 16 J Tr(VU. VU § d3x = -E o  (2.6) 

is equal to minus the energy Eo given by (2.1). The kinetic part of the 
Lagrangian is obtained using (2.4) with (2.5) and it is equal to 

L = ~-~ Tr(0oU C)o U+) d3x 

= bx 2 Tr[OoA 0o a+] + c[:t(t)] / (2.7) 

where 

b = -~- F~ sin2F y2 dy, c = -~- FZ~ y2 yZ dy (2.8) 

with x(t) = [r 3~ and y = rl~. On the other hand, the static energy functional 
(2.1) can be rewritten as 

= y2 + 2 sin2F dy (2.9) Eo = ax ~3, a -~ F~ [ k dy ] 

Thus the total Lagrangian of the rotating soliton is given by 

L = c.,~ - ~ + 2bx2a,,r " (2.10) 

where Tr(0oA OoA +) = 2a~a ~ and a~ (v = 0, 1, 2, 3) are the collective 
coordinates defined as in Bhaduri (1988). In the limit of  a time-independent 
cutoff (.~ ---) 0) we can write 

1 
H = 06P'OL (~,, _ L = ax 2J3 + 2bx2a,,a " = ax ~3 + ~ J(J + 1) 

(2.11) 

where (j2) = j ( j  + 1) is the eigenvalue of the square of the soliton laboratory 
angular momentum. A minimum of (2.11) with respect to the parameter x 
is reached at 

= [ 2  ab ]-3/8 r  [~  ab 114 

x [3 J(J-+ 1) = = J(J + 1)J ] (2.12) 
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The energy obtained by substituting (2.12) into (2.11) is given by 

4[ 3a3 1)] TM (2.13) 
E = "~ ~--~ J(J + 

This result is identical to the result obtained by Mignaco and Wulck, which 
is easily seen if we rescale the integrals a and b in such a way that a ~ �88 
~F~a, b ~ �89 and introduce f~ = 2-3/2F~r.  However, in the present 
approach, as shown in Balakrishna et  al. (1991), there is a profile function 
F = F ( y )  with proper soliton boundary conditions F(1) = --rr and F(~) = 
0 and the integrals a, b, and c in (2.9)-(2.10) exist and are shown in Balak- 
rishna et  al. (1991) to be a = 0.78 GeV 2, b = 0.91 GeV 2, and c = 1.46 
GeV 2 for F~ = 186 MeV. 

Using (2.13), we obtain the same prediction for the mass ratio of  the 
lowest states as Mignaco and Wulck (1989), which agrees rather well with 
the empirical mass ratio for the A resonance and the nucleon. Furthermore, 
using the calculated values for the integrals a and b, we obtain the nucleon 
mass M(N) = 1167 MeV, which is about 25% higher than the empirical value 
of 939 MeV. However, if we choose the pion decay constant equal to F~ = 
150 MeV, we obtain a = 0.507 GeV 2 and b = 0.592 GeV 2, giving exact 
agreement with the empirical nucleon mass. 

Finally, it is of interest to know how large the constant cutoffs are 
for the above values of  the pion-decay constant in order to check if they are 
in the physically acceptable ballpark. Using (2.12), it is easily shown that 
for the nucleons (J = 1/2) the cutoffs are equal to 

~ 0.22 fm for F,~ = 186 MeV (2.14) 
= [.0.27 fm for F~ = 150 MeV 

From (2.14) we see that the cutoffs are too small to agree with the size of 
the nucleon (0.72 fm), as we should expect, since the cutoffs rather indicate 
the size of the quark-dominated bag in the center of the nucleon. Thus we 
find that the cutoffs are of  reasonable physical size. Since the cutoff is 
proportional to F~ t, we see that the pion-decay constant must be less than 
57 MeV in order to obtain a cutoff which exceeds the size of the nucleon. Such 
values of pion-decay constant are not relevant to any physical phenomena. 

3. E L E C T R I C  SEAGULLS IN T H E  CONSTANT-CUTOFF 
M O D E L  

3.1. Introduction 

The calculation of  the static electromagnetic polarizabilities in the com- 
plete Skyrme (1961, 1962) model (CSM) was first performed by Scherer and 
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Mulders (1992), who argued that the nucleon electromagnetic polarizabilities 
provide important information about the nucleon structure. In the recent years 
there has been significant improvement in the experimental measurements 
of these quantities. The quality of the predictions for static electromagnetic 
polarizabilities is a significant test of any model for the description of the 
nucleon. 

The constant-cutoff approach to the calculation of static electromagnetic 
polarizabilities was presented in Dalarsson (1995a). In both the CSM Scherer 
and Mulders (1992) and Dalarsson (1995a) the dominant contribution to the 
polarizability is a seagull contribution--i.e., a term in the effective Hamilto- 
nian quadratic in the external electric field. The method used was to introduce 
an external electric field in the z direction by choosing A0 = -Ez, and then 
to couple it to the Lagrangian density of the model in the usual way. The 
seagull term in the collective Hamiltonian was then simply identified as 
minus the seagull contribution from the collective Lagrangian density since 
this term has no time derivatives. 

On the other hand, a recent publication L'vov (1993) argues that the 
existence of electric seagulls violates the local gauge invariance. Furthermore, 
L'vov (1993) explicitly demonstrated that the Hamiltonian of the Skyrme 
model, and of course even the simplified Hamiltonian in the constant-cutoff 
approach, do not have seagulls. 

However, the behavior of the electric polarizability in the chiral limit 
and for large Nc supports the results obtained in Scherer and Mulders (1992) 
and Dalarsson (1995a) and shows that the seagulls appear to be necessary 
to obtain the correct result in the chiral and large-Nc limits. 

The purpose of the present paper is to resolve this apparent contradiction 
in the case of the constant-cutoff approach to the simplified Skyrme model. 
The contradiction is resolved by observing that the present model is studied 
in the large-N~ limit, where there is a collective manifold of configurations 
which determine the low-energy properties, e.g., a space of rotating 
hedgehogs. 

The main point is now that even though the Hamiltonian of the original 
model has no seagulls, the effective Hamiltonian as a function of the collective 
variables has seagull terms. The argument put forward in L'vov (1993) is 
based on the fact that the field theory is local, while the constraint to the 
collective manifold depends on some spatial integrals and the effective Hamil- 
tonian does not belong to a local field theory. 

Furthermore, the apparent difficulty with assuming that the electric 
seagull term in ~coH is simply minus the seagull term in ~co~ must be 
addressed, since the case of a constant A0 is a clear case where this procedure 
is not correct. This difficulty is immediately resolved in some specific cases, 
e.g., when a term in the collective Hamiltonian, linear in the external field, 
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vanishes for all values of  collective variables due to a symmetry. It will be 
shown that this is the case if all configurations in the collective manifold 
have the same parity and the external field is of odd parity, which applies 
to the present model in a constant electric field. 

3.2. Seagull Terms in the Collective Hamiltonian 

The Lagrangian of the simplified Skyrme model with massive pions is 
obtained from (1.1) by adding the chiral-symmetry-breaking mass term, and 
is given by 

F 2 2 2 m~F ~ 
= ~ Tr OCU a~U + + - - ~  Tr(U + U + - 2) (3.1) 

When an external electromagnetic field is present then, by minimal substitu- 
tion (Dalarsson, 1995a) and using (1.2), we obtain the total Hamiltonian 
density as follows: 

1 dp,G~'dpj + At(~r) - eAo(p + J~ - e2A2(l -'~176 (3.2) 

- J~C,~'J~ 
where (~i = Go'irj + eAoJ ~ are the canonical momenta conjugate to the field 
xri --- "tri(r, t), p = -(2-rrr) -2 sin2F dFIdr is the charge density, F ~176 is the 
seagull term defined in Saito and Uehara (1994), and we define 

jo  = E3jk,ffjGk i (3.3) 

1 --2 --2 (3.4) d~t('ff) = l r j + Ttttlr',lj 

with the metric G 0 given by 

1T i qT j 
6# = ~o + - ~  = ~J + tan2F ~ (3.5) 

It should be noted that in (3.2) we have taken Ay = 0 (j = 1, 2, 3), i.e., we 
have assumed that the external magnetic field is zero. Furthermore, we keep 
only the leading terms in the liNe expansion as in Dalarsson (1995a), i.e., 
we neglect several higher order terms. For the discussion of  these terms see 
Scherer and Mulders (1992) and Dalarsson (1995a). 

It is shown in Saito and Uehara (1994) by explicit calculation that F ~176 
= - J ~ 1 7 6  and that the third term in (3.2) vanishes. Thus at the level of 
the Hamiltonian without constraint to the specific collective manifold there 
are no electric seagull terms. However, in the present model baryons are 
described as slowly rotating field configurations 

(r = �89 cos F, ~rj = �89 sin F Rjirio (3.6) 
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where R o is the time-dependent rotation matrix. We will now show that (3.6) 
as a constraint to the specific manifold in the Hilbert space of the ~r-fields 
leads to the appearance of electric seagull terms. Replacing this hedgehog 
configuration into the Hamiltonian density (3.2), we obtain the total 
Hamiltonian 

H c~ = E s  + ~ l ~ t o  2 + d3reA0 1 sin2 F d F  
4~rr 2 dr 

_ 1 F~ f d3r e2A~ sin2F [1 - R31R3~rJor~] (3.7) 
8 ) 

where the inertia l l  and the static energy Es of  the soliton are given by 

II = -~- F~ dr r 2 sin2F (3.8) 

~ I~ ~ [r2(dFI 2 4m~r 2 sin2 F ]  (3.9) Es = ~ F~ dr + 2 sin2F + 
1_ \dr )  

and to is the angular velocity defined by Rrniemj  = EijktOk. 
Although the third term in (3.2) was shown in Saito and Uehara (1994) 

to vanish, in (3.7) there is still a term proportional to e 2, i.e., a seagull term. 
It has its origin in the first two terms of  (3.2). 

In order to write down a proper canonical form of the Hamiltonian (3.7), 
we introduce the momentum conjugate to the angular velocity to as the 
isospin T, given by 

1 I T/ = atos + ~ F 2 d3r eAoF 2 sin2F (go - roiroj)R3i (3.10) 

Using (3.10), we find that the Hamiltonian (3.7) becomes 
H c~ = H (~ q- H (l) -I- H (2) 

T 2 
= E~ + 2- ~ 

,4 F2 - roiroj) ] + ~ [ f  d3r e o - ~  sinZF (~ij 
.J 

X d3r eAo ~-~ sinZF (gi~ - roirok) R3jR3k 

_ 1 F2 ( d3 r e2A2 sin2 F (1 - -  g 3 j R 3 k r ~ r  k)  (3.1 1) 
8 3 
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where H (i) (i = 0, 1, 2) are terms in the Hamiltonian proportional to d 
(i = 0, 1, 2), which are easily identified in (3.11). 

Now we can turn to the two particular cases of interest. The first case 
is discussed in L'vov (1993), where Ao = const is a constant field. In that 
case we obtain 

H(l)(A0=const) = -eAo( 1 + T3) ,  H(2)(A0=const) = 0 (3.12) 

where we used T3 = R3jT:. Thus in this case the seagull term does vanish 
and the remaining Hamiltonian describes the interaction of the constant field 
Ao with the baryon electric charge. 

The second case, which is of more interest, is that of a constant electric 
field % = %z0 with Ar = (-z%, 0, 0, 0) used in Scherer and Mulders (1992) 
and Dalarsson (1995a). Using here the relation 

R]3 = �89 + 2D~Zltet 3 u . . . .  13' "Y) (3.13) 

where D~2~ is the corresponding D-matrix defined as in Dalarsson (1995a) 
and (c~, 13, ~/) are Euler angles, we obtain 

H")(Ao = -z%) = O, H(2)(Ao = --Z~) = --{geC~2[1 -- 2D~2.~1 
(3.14) 

where 

e2 f ge=]SF~ d3rr 2sin2F (3.15) 

and a more detailed account of the calculation techniques employed to find 
the results (3.14) and (3.15) can be found in Dalarsson (1995a). 

The results (3.14) coincide with those obtained in Eq. (5.11) in Dalarsson 
(1995a) and give the same results for the electric polarizability of nucleons 

= g~, equal to the parameter g~ given in (3.15), since for nucleons the 
matrix element of Dg2~ vanishes, and for the electric polarizabilities of A- 
particles 

~'ge(l - 2/25), IT31 = I J31 
o~ = [g~( 1 + 2/25), IT31 :/: I J31 (3.16) 

The numerical results for electric polarizabilities of nucleons and A-particles 
obtained in Dalarsson (1995a) thus remain valid despite the objections posed 
in L'vov (1993) and Saito and Uehara (1994). In the present paper they are 
confirmed in a more rigorous way. 
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4. CONCLUSIONS 

In conclusion we have demonstrated that, even though a fundamental 
Hamiltonian of the constant-cutoff approach to the SU(2) or-model does not 
contain any electric seagull terms, the constraint to the collective subspace 
of rotating hedgehogs gives rise to the electric seagull terms in the collec- 
tive Hamiltonian. 

Furthermore, we have shown that such terms are in full agreement with 
the corresponding terms obtained using the somewhat naive procedure in 
Dalarsson (1995a). 

Thus the possibility to use the Skyrme model for the calculation of the 
electromagnetic polarizabilities of nucleons and A-particles, without the use 
of the Skyrme-stabilizing term proportional to e -2, which makes practical 
calculations more complicated and generates nonadiabatic corrections to the 
first-order isovector terms, remains valid despite the objections posed in 
L'vov (1993) and Saito and Uehara (1994). On the other hand, these objections 
are in general correct for other cases than the one of  the constant electric 
field in the z-direction, which was explicitly demonstrated in the case of a 
constant A 0 field, where there are no seagull terms. 

Finally, the numerical results obtained in Dalarsson (1995a) are still 
valid and are now based on a more rigorous analytic treatment than the one 
used there. 
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